AVALIAÇÃO DA ADSORÇÃO EM FILMES FINOS

Eduardo Y. Matsuy¹, Michele Ieri¹, Roberto R. Lima², Maria Lúcia Pereira da Silva³ ¹ Aluno do curso de MPCE da FATEC-SP ² Pesquisador Dr. do Instituto de Física, Universidade de São Paulo ³Profa. Dra. do curso de MPCE da FATEC-SP eyoiti@hotmail.com, myieiri@yahoo.com.br, rrlima@if.usp.br, malu@lsi.usp.br

Resumo

Este trabalho teve como objetivo avaliar o uso de medidas de capacitância em filmes finos para determinação qualitativa da ocorrência de adsorção em sua superfície. Como amostras, foram utilizados compósitos produzidos a partir da deposição simultânea de filmes finos fluorados (nonafluoroisobutil eter, como reagente) e filmes finos a base de organo-silanos (hexametildissilazana, como reagente).

Os resultados obtidos, embora qualitativos, estão de acordo com o esperado para a adsorção em compósitos com esta composição. Estes resultados também indicam um procedimento experimental para ensino de propriedades físico-químicas das superfícies.

1. Introdução

A fabricação de novos materiais tem evoluído bastante nos últimos anos, entre outras coisas, pelas excelentes propriedades mecânicas e elétricas que muitos destes materiais possuem, o que, por sua vez, tem grande impacto nos modos de produção [1].

Dentre os novos materiais, os materiais compósitos são interessantes porque as propriedades químicas, físicas, e especialmente as mecânicas e/ou elétricas, podem ser variadas enormemente. Essas variações dependem de inúmeros fatores, desde a síntese até a aplicação do material, mas indiscutivelmente a composição do material disperso na matriz é um dos principais fatores [2]. Assim, apenas como exemplos citam-se aqui dois tipos distintos de compósitos e suas utilizações: rota de fabricação utilizando sol-gel e o uso de nanotubos de carbono.

A química de sol-gel é bastante importante por corresponder a um caminho de síntese simples para a obtenção de novos materiais. Com o uso de compostos de silício é possível fabricar uma ampla gama de materiais, em geral porosos e capazes de "aprisionar" moléculas nos sítios ativos presentes nessa estrutura porosa. Portanto, tais materiais são muito utilizados para fins analíticos, que vão desde a preparação da amostra a fabricação dos sensores/detetores até dos equipamentos de análise [3]. Com a variação do tamanho dos poros deste material, bem como das suas propriedades de superfície, obtém-se desde catalisadores mais eficientes até materiais leves, mas resistentes mecanicamente [4,5].

Compósitos e nanocompósitos com matriz polimérica são comuns em vários setores produtivos, entre eles o setor eletroeletrônico [6]. Na área de microeletrônica, por exemplo, há um grande interesse na fabricação de compósitos com nanotubos de carbono. Assim, de acordo com a composição do material, a condutividade de filmes finos formados por nanotubos de carbono dispersos em uma matriz polimérica pode ser variada de várias décadas [7] e esta variação pode ser ampliada, por exemplo, pela adição de partículas metálicas [8].

As propriedades elétricas de filmes finos podem ser mudadas pela adsorção de reagentes em sua superfície e esta característica em geral é utilizada para a fabricação de sensores [9,10]. Os alunos, tanto da área de materiais quanto da área eletrônica, por sua vez, aprendem sobre propriedades elétricas dos materiais, contudo, devido aos interesses diversos, equipamentos e materiais distintos são utilizados. Assim, foi objetivo deste trabalho verificar a possibilidade de ensino sobre propriedades de superfície, mesmo que de modo qualitativo, pelo uso de filmes finos adsorventes e medida de capacitância, o que, em princípio favorece a integração entre as áreas de materiais e de eletrônica. Os filmes finos escolhidos foram depositados por plasma, mas similares podem ser obtidos por via úmida, por exemplo, utilizando reagentes úteis na produção de fases estacionárias de colunas cromatográficas.

2. Metodologia

Lâminas de silício (tipo p, 100, 10-20 Ω.cm, Silicon Sence, Inc., EUA) foram utilizadas como substrato. A lâmina de silício foi utilizada por ter uma superfície plana onde os filmes depositados apresentam boa adesão [11-14]. Por outro lado, os testes devem considerar que as medidas estão sendo realizadas com um substrato semicondutor, ou seja, a curva terá as três regiões comuns à curva de capacitores MOS (inversão, depleção e acumulação). Testes similares já foram desenvolvidos com filmes finos semelhantes e a teoria envolvida nessas medidas pode ser encontrada em [11]. Os reagentes para deposição foram nonafluoroisobutil eter (HFE®, 3M, EUA) e hexametildissilazana (HMDS, Fluka Chemie GmbH, Suiça), ambos grau industrial. A deposição por plasma utilizou equipamento com fonte DC e desenvolvido para permitir a deposição de filmes incompatíveis para co-deposição em plasma. Isto é, devido aos dois sistemas de injeção de reagentes, que são completamente independentes [12,13]. O sistema principal é o ânodo enquanto que a admissão auxiliar é na mesma região do eletrodo auxiliar, que nesse caso foi mantido flutuante porque estudos anteriores demonstraram que essa condição é a ideal para estas deposições. Por fim, a amostra é mantida no cátodo (aterrado). As demais condições de deposição são apresentadas na Tabela I, sendo a pressão de deposição mantida em 100 mTorr e a distância entre ânodo e cátodo de 65 mm.

A deposição de compósitos é obtida pela técnica denominada *intermixing*. Nesse caso, reagentes distintos são inseridos simultaneamente no plasma, utilizando-se os dois sistemas de admissão [12].

Reagente no Sistema de Admissão		Tensão	Filme a base
Principal	Auxiliar	(\mathbf{v})	ue
Éter	Éter	550	Éter fluorado
HMDS	HMDS	400	Organo-silano
Éter	HMDS	500	Compósito

Tabela I – Condições de deposição para filmes

Como o equipamento é adequado para permitir que grande parte do fluxo do reagente advindo do eletrodo auxiliar atinja a amostra, reações íon/molécula são favorecidas e compósitos podem ser formados, mesmo que os parâmetros de processo sejam inadequados para um dos reagentes. Os compósitos obtidos podem ter dimensões entre milimétricas а nanométricas, dependendo das condições de deposição [13,14], portanto as amostras foram avaliadas por microscopia óptica. Além disso, os filmes depositados foram analisados por espectroscopia de infravermelho por transformada de Fourier (FTIR, BioRad, EUA), para determinar a estrutura química. As amostras usadas para medidas de capacitância em função da tensão têm espessura de aproximadamente 100 nm e foram medidas usando-se frequência de 1 MHz e polarização DC variável, em geral de 0 a 30V, e um analisador de impedância (Agilent 4294, EUA). O eletrodo utilizado tem diâmetro de 2 cm, para permitir a análise de uma grande área do filme. Esse equipamento já foi utilizado para caracterização de filmes, mas, em geral, tratam-se de filmes espessos [15]. Os resultados obtidos com esse equipamento são aqui apresentados considerando-se apenas o módulo da tensão para que a curva CV não se apresente invertida; ou seja, para tensão positiva no filme, se o substrato estiver invertido, a capacitância será mínima.

Para testes de adsorção utilizaram-se vapores de 2propanol e n-hexano, reagentes orgânicos polar e apolar, respectivamente. Para a exposição do filme usou-se, por tempo inferior ou igual a 10 s, um fluxo de 5 sccm de ar saturado com o vapor do reagente. Para o teste de remoção do produto utilizou-se o fluxo de ar por tempos variados. Os testes exigem (como será explicado posteriormente, em Resultados e Discussão) que a amostra não seja retirada do eletrodo de medida durante a exposição, portanto um arranjo experimental composto por suporte universal, compressor de ar e dedo frio com reagente de teste, foi adicionado à região próxima do eletrodo, como esquematizado na Figura 1.

Alguns testes também foram efetuados injetando-se – com seringa descartável de 1 mL ou 3 mL - valor conhecido de vapor saturado. Nesse caso o tempo de exposição ao reagente é muito pequeno, o que permite avaliar, aproximadamente, o limite de detecção do filme fino.

Figura 1 – Esquema do arranjo experimental para medidas de mudança nas capacitâncias de filmes poliméricos pela exposição a reagentes

3. Resultados e Discussão

Os resultados obtidos são aqui descritos na seguinte ordem: inicialmente apresentam-se os espectros de infravermelho obtidos, comenta-se sobre as propriedades de adsorção dos filmes e as respectivas informações obtidas pela medida de capacitância, encerrando-se com a comparação entre estas duas informações.

Os espectros de infravermelho obtidos são apresentados na Figura 2, para a região de maior interesse, enquanto a Tabela II indica a relação de intensidade entre as bandas mais intensas.

O filme fluorado apresenta espécies CF (faixas entre $3400-2200 \text{ cm}^{-1} \text{ e} 500-1200 \text{ cm}^{-1}$), CO (em 1100 cm⁻¹ e/ou 1700 cm⁻¹), além CH_n (2900 cm⁻¹). Para filmes a base de HMDS encontram-se: CH_n (2950 cm⁻¹), CH₂ (1450 cm⁻¹), CH₃ (1370 cm⁻¹), SiCH₃ (1260 cm⁻¹), SiN (1180 cm⁻¹) e SiO (1070 cm⁻¹), devido à oxidação do monômero [12-14]. Na Figura 2 é possível observar que, devido às diferenças nas taxas de deposições para *intermixing*, a polimerização de éter é menos favorecida e espécies advindas do HMDS, como SiCH₃, são mais evidentes, como pode-se notar na Tabela II. A banda bastante larga obtida na faixa entre 1000 cm⁻¹ e 1250

cm⁻¹, para filme depositado por *intermixing*, é devido à formação de *clusters*, ou seja, o ambiente químico, devido à formação do compósito, é bastante heterogêneo e favorece o alargamento da banda.

Tabela II – Razão entre as intensidades relativas das bandas mais intensas, de acordo com a Figura 2

Posição	Intensidade relativa		
(cm ⁻¹)	(u.a.)		
Filme a base de HMDS			
1026	1,0		
1260	0,6		
Filme a base de HFE			
1107	1,0		
Filme a base de intermixing			
1109	1,0		
1260	0,3		

As propriedades de adsorção desses materiais foram determinadas por microbalança de quartzo e podem ser descritas sucintamente como segue:

- Filmes a base de HMDS: são adsorventes para compostos orgânicos, tanto polares como apolares, e tendem a sofrer aumento de volume quando expostos a tais compostos [12];
- Filmes a base de HFE[®], éter fluorado: são adsorventes preferencialmente para compostos orgânicos polares, ocorrendo permeação destes compostos pelo corpo do filme [13,16];
- Intermixing: os filmes são adsorventes preferencialmente a compostos orgânicos polares, mas não há permeação desses compostos [13].

Assim, pode-se esperar variação irreversível nas medidas de capacitância dos filmes que apresentam éter fluorado, mas não naqueles a base de HMDS. Por outro lado, a boa capacidade de adsorção dos filmes a base de HMDS deve favorecer facilmente uma mudança da curva de capacitância.

As medidas de capacitância obtidas para os filmes são apresentadas nas figuras 3 a 8. Para a realização das medidas, um eletrodo móvel (micrômetro) deve entrar em contato com o filme fino enquanto o porta-amostra (segundo eletrodo - substrato) é aterrado. Assim, tornase necessário medir a amostra sem adição de vapores, suspender o eletrodo, adicionar os vapores e reposicionar o eletrodo. Portanto, inicialmente verificou-se se a reprodutilibilidade que se pode obter com esse procedimento e, também, qual a possibilidade de "danificar" o filme apenas pela modificação da pressão do parafuso, já que o filme é fino. A curva de capacitância sofre variação inferior a 100 pF em toda a extensão, não importa em que região ocorra a medida. Quanto ao filme a base de HMDS, na Figura 3 pode-se observar resultados típicos obtidos para tais medidas e. para facilitar a visualização dos resultados, a Tabela III apresenta os valores de capacitância medidos a 20 V. Nesse conjunto de medidas, a sequência de ações é como segue:

- Da 1^a à 3^a medida o eletrodo móvel é removido da superfície e retornado, seguindo-se estritamente o posicionamento anterior, de acordo com o parafuso micrométrico.
- A 4^a. medida corresponde a uma simulação de remoção da amostra do eletrodo, exposição desta e retorno para a medida.
- A 5^a e 6^a amostra corresponde a uma tentativa de retornar a amostra ao ponto mais próximo possível da posição existente nas três primeiras medidas.

Assim, pode-se observar que variação significativa ocorre quando a amostra é manipulada - originando variação na localização da medida. O resultado é coerente considerando-se que a variação da localização pode significar pressão diferente do parafuso sobre o filme. Além disso, como pode ser visto na Tabela III, apenas por variação do eletrodo móvel, de modo geral o valor sofre uma variação menor que 1 pF, o que indica uma boa reprodutibilidade. Portanto, todos os experimentos preservaram a localização da amostra e apenas removeram e reposicionaram o eletrodo, através do parafuso, o que exigiu que o sistema de inserção de reagente fosse aproximado do eletrodo, como descrito em Materiais e Métodos. Contudo, como a aquisição de dados no equipamento ocorre em tempos muito curtos (<1s), para diminuir a possibilidade de que variações espúrias modificassem significativamente as medidas, os valores considerados - e aqui apresentados - são as médias de três medidas consecutivas.

Figura 3 – Curvas da capacitância em função do módulo da tensão para silício e filme a base de HMDS medidos após a movimentação do eletrodo móvel, repetidas vezes

Tabela III - Valores de capacitância medidos a 20 V na

Figura 3		
Medida	Valor (pF)	
1	192,7	
2	199,3	
3	199,7	
4	172,4	
5	180,5	
6	181,8	

A adição de vapores de n-hexano aos filmes a base de HMDS e posterior remoção com fluxo de ar isento de contaminação ("limpo") apresentou duas características interessantes e a Figura 4 apresenta resultados típicos, onde o filme foi sequencialmente exposto por duas vezes e durante 10s a vapores de n-hexano e posteriormente exposto a 1 minuto de ar limpo:

(1) é possível modificar significativamente a curva original, ocorrendo um aumento no máximo dos valores que não se reproduz na segunda exposição consecutiva. Esse resultado pode ser explicado considerando-se que a exposição do filme a esses vapores rapidamente varia o visco-elástico do filme, comportamento como observado por espectroscopia Raman [17], o que possivelmente varia sua permissividade dielétrica; (2) a exposição ao ar isento de contaminação, muito embora a curva sofra modificação que a aproxima da condição de "primeira exposição", não garante a obtenção dos valores originais na curva, ou mesmo valores próximos, como é obtido quando o filme não é exposto. Isto é coerente com a mudança da permissividade dielétrica. Essa mudança tende a

permanecer no filme por longo tempo, o que pode

explicar o resultado obtido.

Figura 4 – Curva da capacitância em função do módulo da tensão para filmes a base de HMDS quando expostos a vapores de n-hexano

A resposta para a adição de 2-propanol ao fluxo de ar é apresentada na Figura 5. A adição do reagente por tempo total de 10s (1^a. exposição) ou 30s (3^a. exposição) produz respostas muito semelhantes, ou seja, a saturação ocorre já na primeira exposição. Além disso, a tentativa de remoção com fluxo de ar parece favorecer as mudanças das características do filme em lugar de retornar o sinal aos valores anteriores. A boa adsorção do reagente no filme já foi confirmada por microbalança de quartzo [12,17], o que pode explicar a rápida saturação. Por outro lado, o reagente 2-propanol é polar, o que favorece a formação de pontes de hidrogênio entre as moléculas e pode ter dificultado a remoção do filme, além disso, o fluxo de ar pode ter facilitado o espalhamento do reagente pela monocamada que normalmente se forma no início da adsorção,

permitindo, assim, que o sinal não apresentasse valores mais próximos do inicial.

Para filmes a base de HMDS, as curvas obtidas são ligeiramente diferentes para cada amostra produzida, mas o comportamento pela exposição aos reagentes é reprodutível.

Figura 5 – Curva da capacitância em função do módulo da tensão para filmes a base de HMDS quando expostos a vapores de 2-propanol

O filme fluorado (fabricado a base de HFE[®]) não é sensível a compostos orgânicos apolares, mas permite a permeação de compostos orgânicos polares, o que torna possível seu uso como membrana seletiva [16]. As medidas com esse filme e utilizando 2-propanol como reagente não apresentaram resultados reprodutíveis, o que é coerente com a propriedade de membrana seletiva. O uso de n-hexano, por outro lado, não apresenta mudanças significativas nas curvas, o que também é coerente com a pouca interação com compostos apolares. A Figura 6 apresenta resultado após a exposição do filme durante 1 minuto a ar saturado com vapores de n-hexano. Essa pequena variação é irreversível e a exposição a vários minutos de fluxo de ar não permite que o filme retorne aos valores anteriores. 45

Figura 6 – Curva da capacitância em função do módulo da tensão para filmes a base de HFE^(R) quando expostos a vapores de n-hexano

O compósito apresenta comportamento intermediário entre o obtido com os dois filmes descritos anteriormente. Assim, com a adição de 2-propanol (Figura 7) há uma grande variação no valor máximo medido, mas não ocorre a saturação mesmo após três exposições consecutivas, cada uma com 10s de ar saturado com vapor. Do mesmo modo, a remoção do reagente não é favorecida. O primeiro comportamento é coerente com a existência de filme a base de HFE[®] na superfície enquanto a dificuldade de remoção do produto é comum ao filme a base de HMDS.

Figura 7 – Curva da capacitância em função do módulo da tensão para filmes compósitos (a base de HMDS e HFE^(R)) quando expostos a vapores de 2-propanol (10 s de ar saturado com vapor)

A adição de n-hexano (Figura 8), por sua vez, não varia a curva tão acentuadamente como ocorre quando o filme é apenas a base de HMDS (Figura 3), por outro lado, a remoção é difícil, de modo similar ao que ocorre com filmes a base de HMDS.

Figura 8 – Curva da capacitância em função do módulo da tensão para filmes compósitos (a base de HMDS e HFE^(R)) quando expostos a vapores de n-hexano (10s de ar saturado com vapor)

Portanto, o comportamento intermediário encontrado para o compósito indica a existência dos dois filmes na superfície, como foi comprovado por espectroscopia de fotoelétrons por Raio x (XPS) [16].

Os filmes foram continuamente utilizados tendo mostrado o mesmo comportamento por mais de 10 grupos de medidas (sequências de adsorção/remoção, como as descritas anteriormente) consecutivas.

4. Conclusões

Este trabalho tentou estabelecer um procedimento para o uso de medidas elétricas para a compreensão das propriedades de adsorção de filmes finos e/ou seus compósitos. As respostas obtidas foram coerentes com a maioria dos resultados determinados por outras técnicas, tais como, por microbalança de quartzo [12,13,14,16,17].

Os bons resultados obtidos, aliados ao fato que filmes semelhantes podem ser obtidos por via úmida, sugere que o processo de adsorção – e, talvez, de sensores que utilizem essa propriedade - possa ser visualizado pelo uso de tais medidas.

Por fim, deve-se salientar que o arranjo experimental necessário para tais medidas é bastante simples e pode a exceção do equipamento de medida elétrica - ser obtido em qualquer laboratório de Química.

Agradecimentos

À FAPESP e CNPq, pelo apoio financeiro.

Referências Bibliográficas

- R. Adamian, Novos materiais: tecnologia e aspectos econômicos; 1. ed, Rio de Janeiro: COPPE/UFRJ, p. 380, 2009.
- 2] P.H.C. Camargo et al, Nanocomposites: synthesis, structure, properties and new application opportunities. Mat. Res., vol.12, n.1, p. 1-39, Mar. 2009.
- [3] A. Walcarius, M.M. Collinson, Analytical Chemistry with Silica Sol-Gels: Traditional Routes to New Materials for Chemical Analysis. Annual Review of Anal. Chem., Vol. 2, p. 121-143, Alain Walcarius and Maryanne M. Collinson.
- [4] A. Katti et al, Chemical, Physical, and Mechanical Characterization of Isocyanate Cross-linked Amine-Modified Silica Aerogels. Chem. Mater., vol. 18, p. 285–296, 2006.
- [5] N. Leventis et al, Nanoengineering Strong Silica Aerogels. Nano Letters, vol. 2 (9), p. 957–960, 2002.
- [6] F. Hussain et al, Polymer-matrix nanocomposites, Processing, Manufacturing, and Application: An Overview. Journal of Composite Materials, vol. 40 (17), p. 1511-1575, 2006.
- [7] S.S. Ojha et al, Characterization of Electrical and Mechanical Properties for Coaxial Nanofibers with Poly(ethylene oxide) (PEO) Core and Multiwalled Carbon Nanotube/PEO Sheath. Macromolecules, vol. 41 (7), p. 2509–2513, 2008.

- [8] N. Geblinger et al, Preparation and characterization of a double filler polymeric nanocomposite. Composites Science and Technology, vol. 67 (5), p. 895-899, 2007.
- [9] R.D. Yang et al, Analyte chemisorption and sensing on n- and p-channel copper phthalocyanine thin-film transistors. J. Chem. Phys., vol. 130 (16), p. 4703-4711, 2009.
- [10]A. Oprea, N. Bârsan, U. Weimar, Work function changes in gas sensitive materials: Fundamentals and applications. Sensors and Actuators B: Chemical, vol. 142 (2), p. 470-493, 2009.
- [11]M.Y. Ieiri et al, Electrical characterization of adsorbent films for VOC's detection. Revista Brasileira de Aplicações de Vácuo, v. 28 (1-2), p. 7-13, 2009
- [12] R.R. Lima et al, Adsorbent new materials and composites produced in a single step, Sensors and Actuators B, vol. 137, p. 185-194, 2009.
- [13] R.R. Lima et al, Corrosion resistant and adsorbent plasma polymerized thin film. Sensors and Actuators B, vol. 141, p. 349-360, 2009.
- [14]R.R. Lima et al, Single step process for particles surface modification or thin film composite production. Sensors and Actuators B, vol. 137, p. 170-179, 2009.
- [15]L. Bontempo, E.S. FERREIRA, L. KASSAB, Caracterização Elétrica de Vidros de Telureto com Nanoparticulas de prata. Anais do 10° Simpósio de Iniciação Científica e Tecnológica. São Paulo: Boletim Técnico da Faculdade de Tecnologia de São Paulo, v. 25, p. 116-116, 2008.
- [16]R.R. Lima et al, Perfluorocompound and Hexamethyldisilazane Thin Film Composite Material used for Surface Modification. Materials Science Forum, vols. 636-637, p. 1073-1078, 2010.
- [17]M.L.P. da Silva et al, Use of plasma polymerized highly hydrophobic hexamethyldissilazane (HMDS) films for sensor development. Sensors and Actuators B: Chemical, vol. 91(1-3), p. 362-369, 2003.