AVALIAÇÃO DA CAPACIDADE DE ADSORÇÃO EM SUBSTRATOS FLEXÍVEIS

Leonardo Frois Hernandez*, Antônio Pereira do Nascimento Filho**, Maria Lúcia Pereira da Silva***, Nicole Raymond Demarquette****

E-mail: lfh@lsi.usp.br, malu@lsi.usp.br

Resumo

tem por trabalho objetivo Este caracterização de substratos orgânicos flexíveis para possível utilização na produção de microestruturas. A caracterização foi feita utilizando-se a técnica de Microbalança de Quartzo, sendo então necessário o desenvolvimento de metodologia de análise. Foram desenvolvidos métodos de adesão dos substratos a serem caracterizados à superfície do cristal de quartzo. Os métodos foram denominados de adesão direta, adesão por camada de PMDS, adesão utilizando-se solução de PMDS e HMDS e ancoragem direta. Após adesão, os substratos foram expostos a vapores de reagentes em larga escala de polaridade. Verificou-se que é possível a caracterização qualitativa dos substratos, porém a quantidade e espessuras das camadas colocadas sobre o cristal de quartzo leva a fenômenos não gravimétricos, que aumentam a complexidade dos parâmetros e tornam a análise apenas semiquantitativa. Contudo, esta técnica de baixo custo permite a compreensão dos fenômenos que ocorrem em substratos finos, podendo ser mais explorada para viabilizar o estudo de filmes que apresentem menor quantidade de massa aderida sobre a superfície do cristal, como filmes finos.

1. Introdução

Industrialmente, a tendência atual é o uso de processos produtivos que utilizem menor quantidade de insumos, tais como matéria-prima e energia. Aliado a isto, existe uma busca por novos produtos que resultem em menor impacto ambiental na sua produção, consumo e descarte, ou seja, que utilize matéria-prima ambientalmente correta e, preferencialmente, reciclável. Assim, esta estratégia baseia-se no desenvolvimento de tecnologias mais limpas. Quando a produção e o descarte ocorrem através de várias indústrias trabalhando com sinergia tem-se a aplicação do conceito de Ecologia Industrial [1].

Novos substratos para o desenvolvimento de microestruturas também vêm sendo extensivamente procurados. O baixo custo de produção, bem como a possibilidade da produção em fluxo contínuo, são os principais parâmetros considerados. Neste aspecto, estudos recentes mostraram que a celulose pode ser impermeabilizada para posteriormente receber uma camada de filme com propriedades de adsorção [2, 3] ou membrana seletiva [4].

Em eletrônica a produção em fluxo contínuo faz uso de substratos flexíveis movidos entre rolos e é denominada Roll-to-roll. Há várias décadas estes sistemas estão presentes em diversas áreas da eletrônica, tais como produção de células solares [5] e circuitos impressos [6]. Para produção de células solares, substratos com 600 m de comprimento [7] já eram usados na década de 70 e na década de 90 havia a produção em massa de silício amorfo para estas células [8]. A tendência atual é o desenvolvimento do uso de substratos orgânicos, PET (polietilenotereftalato) [9]. No futuro, sistemas mais complexos como o papel eletrônico [10, 11], já em produção, será comum. Para circuitos impressos [12] a produção em substratos flexíveis ocorre desde a década de 70. Também para o desenvolvimento de microestruturas [13], o uso de substratos flexíveis e a integração com a microeletrônica são importantes, o que sugere o uso de polímeros de baixo custo.

A técnica de microbalança utilizando Cristais Piezelétricos de Quartzo (QCM) é uma técnica muito versátil e é muito utilizada em Química Analítica. Esta técnica permite que sejam observadas as propriedades de adsorção e dessorção de materiais, tanto em fase gasosa quanto líquida. Nesta faz-se o monitoramento da freqüência de vibração de um Cristal Piezelétrico de Quartzo (PQC) através de um circuito oscilador [14].

QCM é uma técnica muito versátil para caracterização de filmes depositados diretamente sobre o cristal, porém sua utilização não é comum na caracterização de substratos sólidos [15], devido a problemas de aderência entre eles. Assim, este trabalho destina-se a verificar a possibilidade de caracterizar substratos orgânicos flexíveis com ou sem modificações superficiais, utilizando-se a técnica de QCM.

2. Parte experimental

Foram utilizados como substratos papel celofane (*Bataica Papéis e Embalagens LTDA*), com 20 μm de espessura, filme de policloreto de vinila - PVC (*Goodyear do Brasil Produtos de Borracha LTDA*), com 11,8 μm de espessura, e cristais piezelétricos de quartzo (PQC) com 4,069 MHz (*Phillips Components*).

Os substratos receberam filmes finos a base de: hexametildissilazana (HMDS, (300 mTorr, 400 W, 700 Å; equipamento tubular com fonte de 13,56 MHz)), 2-propanol (1,5 Torr, 100 W, 5 min, reator de 40 kHz) ou dupla camada (deposição a base de

^{*} Tecngo., Departamento de Sistemas Eletrônicos da Escola Politécnica da USP

^{**} M. Enga., Departamento de Sistemas Eletrônicos da Escola Politécnica da USP

^{***} Profa. Dra., Faculdade de Tecnologia de São Paulo – CEETEPS - UNESP

^{****} Profa. Dra., Departamento de Engenharia de Materiais da Escola Politécnica da USP

HMDS, 570 nm, seguida da deposição de 2-propanol, 130 nm). Alguns PQCs receberam filme a base de HMDS, para aumentar sua capacidade de adsorção e serem utilizados como detetor na técnica de QCM [15]. Os filmes a base de HMDS apresentam baixa rigidez e provavelmente não devem modificar a elasticidade de substratos flexíveis.

Para a avaliação da capacidade de adsorção de filmes orgânicos flexíveis pela técnica de QCM foi necessário o desenvolvimento de método de adesão do substrato ao PQC. Três métodos distintos foram testados e são descritos no item 3 (Resultados e Discussão).

Os testes de adsorção utilizaram reagentes orgânicos em larga faixa de polaridade (n-hexano, clorofórmio, acetona, 2-propanol) e água deionizada carregados por nitrogênio. Estes testes foram de cunho qualitativo, ou na melhor das hipóteses semi-quantitativo, e por isto não houve a preocupação com determinação de valores.

Os reagentes utilizados são PA (Casa Americana Ltda.), exceção à polidimetilsiloxano - PDMS (*Dow Corning Corporation, USA*) e HMDS, que são de grau industrial.

3. Resultados e discussão

Apresentam-se os resultados em duas partes distintas: desenvolvimento de método de adesão sobre PQC e resultados de adsorção.

3.1 Adesão sobre PQC

Como mencionado, foram testados vários métodos de adesão do substrato ao PQC, como segue:

1.) adesão direta sobre o cristal utilizando-se filme a base de HMDS. Sua utilização advém do fato de suas conhecidas propriedades como promotor de aderência. Foi depositado por plasma um filme a base de HMDS (400 mTorr, 400 W, 3,5 min; reator de 13,56 MHz) [15] tanto sobre o PQC quanto sobre a celulose, que foram colocados com a face depositada frente a frente. Através de um aparato de Teflon®, foi feita a compressão do conjunto (cristal+celulose) por cerca de 24 horas, sendo verificada posteriormente a ocorrência da adesão. A Figura 1 mostra esquematicamente o aparato de Teflon®, e as camadas de PQC/HMDS/substrato.

Testes de adesão do conjunto mostraram que o processo não é reprodutível.

2.) utilização de uma camada líquida de PDMS. A utilização de PDMS apresenta vantagens, como facilidade de manuseio e possibilidade de desmontagem do conjunto. Com o auxílio de uma seringa foi depositado sobre o PQC cerca de 100 µL do reagente. O procedimento seguinte é semelhante ao anterior, ou seja, uso do aparato de Teflon, com compressão por cerca de 5 minutos.

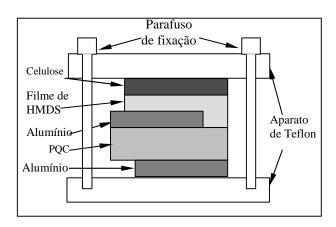


Figura 1 – Aparato de Teflon e ilustração das camadas formadas sobre um PQC com celulose e filme de HMDS para promover adesão.

Neste caso, foi possível a adesão da celulose sobre o PQC, mas a resposta da técnica de QCM torna-se limitada pelo alto volume de reagente utilizado. Portanto, esse processo de adesão é mais adequado para substratos extremamente finos, como o PVC.

3.) adesão utilizando uma solução de 50% em vol. de PDMS e 50% em vol. de HMDS. Deste modo, o amortecimento provocado pela camada de *PDMS* é reduzido, aumentando com isto a sensibilidade do cristal piezelétrico. O procedimento para adesão foi semelhante ao utilizado na adesão utilizando somente *PDMS*.

4.) adesão por ancoragem direta. Substratos plásticos e facilmente deformáveis, como o filme fino de PVC, podem ser conformados diretamente sobre o PQC, utilizando o aparato de Teflon. Nesse caso a adesão ocorre em um período de 1 hora, devido à fácil deformação mecânica do substrato.

Os conjuntos (substrato+cristal) obtidos usando os três últimos métodos, quando observados através da microscopia óptica, mostraram-se bastante semelhantes, pois não apresentaram descolamento para qualquer substrato, com ou sem filme fino depositado.

3.2. Adsorção dos substratos

Os testes de adsorção foram divididos em dois grupos distintos, testes com celulose e testes com PVC respectivamente, devido à conhecida característica da celulose em adsorver água.

3.2.1. Adsorção em celulose

Devido à grande facilidade de adsorção de água, os conjuntos celulose+PQC foram testados por QCM usando água como reagente e em dois tempos diferentes. O primeiro, com exposição da celulose ao vapor de água por 30 segundos, permite avaliar melhor a adsorção, e o segundo, com exposição por 5 minutos, a permeação.

As Figuras 2 e 3 mostram aos resultados obtidos pela técnica de QCM usando um conjunto PQC+celulose sem tratamento e exposto ao vapor de água. O processo de adesão utilizou PDMS (método 2). A Figura 2 corresponde a um menor intervalo de

tempo de observação, onde apenas fenômenos gravimétricos ocorrem enquanto a Figura 3 apresenta um intervalo maior de tempo e outros fenômenos, tais como permeação ou descolamento do filme.

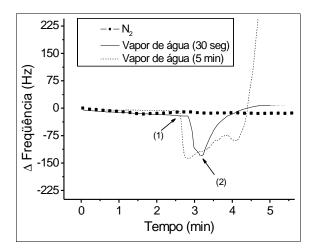


Figura 2 – Variação da freqüência em função do tempo para celulose aderida sobre PQC e exposto à vapor de água.

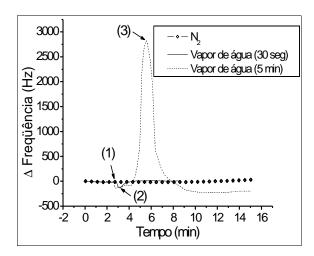


Figura 3 – Variação da freqüência em função do tempo para celulose aderida sobre PQC e exposto à vapor de água.

Nestas figuras a região (1) indica adição de vapor d'água carregado por um fluxo de N_2 e as regiões 2 e 3 a remoção desta água em 30s ou 5 min, respectivamente.

A Figura 2 mostra que a variação de freqüência manteve-se muito próxima nas duas curvas, num intervalo de aproximadamente 20 segundos após o início da exposição ao reagente. A queda na variação de freqüência indica que até este instante a interação da celulose com o vapor d'água ocorre de maneira gravimétrica [14]. Isto pode ser um indicativo que a quantidade de massa adsorvida na superfície da celulose não foi suficiente para criar

modificações estruturais ou em tempos curtos não ocorreu a difusão da água pela celulose.

O aumento na variação de frequência para tempos mais longos (Figura 3) indica que a interação deste reagente não mais ocorre de maneira gravimétrica [14]. Isto pode ser resultado de modificação física da celulose, que provoca uma mudança de suas características visco-elásticas (entumecimento), o que pode levar a celulose a descolar do PQC. Com o descolamento, uma massa menor fica em contato com o PQC, fazendo a sua freqüência de vibração aumentar. Pode-se observar que não ocorre grande variação na freqüência de vibração do PQC durante a passagem de N2. Isto indica que não havia substâncias adsorvidas na superfície da celulose em grande quantidade ou que o N₂ não pôde removê-las. Esses resultados são coerentes com as observações de microscopia óptica, que não mostra enrugamento da celulose antes de 2 minutos de exposição à água.

A celulose modificada pela deposição de filme fino a base de 2-propanol mostra diferenças de comportamento pela técnica de QCM. As Figuras 4 e 5 apresentam a variação da freqüência em função do tempo para a técnica QCM. A diferença entre os conjuntos testados é o método, correspondendo a adesão por PDMS na Figura 4 e adesão com solução 50% PDMS e 50% HMDS na Figura 5. Nestas figuras a região (1) e (2) indicam o instante que ocorre a admissão e a remoção dos reagentes da cela de detecção, respectivamente.

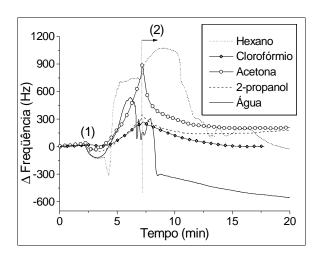


Figura 4 – Variação da freqüência em função do tempo para PQC com celulose e posterior deposição de filme a base de 2-propanol: (1) adição; (2) remoção dos reagentes. A) PQC com celulose aderida com *PDMS*.

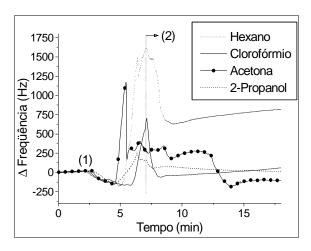


Figura 5 – Variação da freqüência em função do tempo para PQC com celulose e posterior deposição de filme a base de 2-propanol: (1) adição; (2) remoção dos reagentes. A) PQC com celulose aderida com *PDMS* e HMDS.

Não se observa variação sensível no comportamento dos conjuntos, demonstrando a boa reprodutibilidade que se pode obter. Nestas figuras pode-se notar que cerca de 1 a 2 minutos após a admissão dos reagentes na cela de detecção ainda ocorre apenas um comportamento típico de adsorção, caracterizado pela queda na freqüência (região 1). Como o filme a base de 2-propanol é uma membrana seletiva e o tempo para iniciar o comportamento não gravimétrico é maior que o obtido para o substrato sem tratamento, provavelmente ocorreu a permeação dos reagentes pelo filme e posterior descolamento do substrato (celulose) da superfície do cristal piezelétrico. Esse comportamento independe da polaridade do reagente porque foi observado em tempo similar para todos os reagentes utilizados. Portanto, a mínima quantidade de reagente necessária para modificar o substrato é muito pequena. Por exemplo, para 2corresponde aproximadamente a 2,3 propanol mg/mm^2 .

As curvas de adsorção e dessorção de um PQC com celulose e filme em dupla camada obtidas pela técnica de QCM são mostradas na Figura 6. Pode-se observar, através das curvas de adsorção (1) e dessorção (2), que a adição de 2-propanol, acetona e n-hexano, mas não a de água ou clorofórmio, deve estar provocando o entumecimento da celulose, já que ocorre o aumento da frequência de vibração para aqueles reagentes. A proteção que a água oferece ao substrato pode ser explicada pela barreira que o filme de HMDS forma, devido ao seu caráter hidrofóbico. Para clorofórmio, a sua alta massa molecular e tamanho da molécula podem ter dificultado a difusão no filme a base de HMDS, e ao redor das fibras, como já foi observado em deposição sobre papel de filtro usando líquidos [3, 4]. Portanto, a difusão dos reagentes através da superfície do filme até o corpo do substrato é possível, com um modelo semelhante ao proposto para a deposição em papel de filtro.

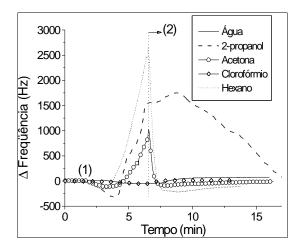


Figura 6 – Variação da frequência em função do tempo de um PQC com celulose modificada pela deposição de filme fino em dupla camada de HMDS e 2-propanol: (1) adição; (2) remoção da H₂O.

A difusão ocorre também para filmes menos rígidos, como os depositados com fonte de potência em freqüência maior. A Figura 7 mostra os resultados de QCM para filme fino a base de HMDS, obtidos em potência de 13,56 MHz, quando se utiliza água. Pode-se observar que ocorreram os mesmos efeitos anteriormente descritos, contudo a difusão é mais lenta devido ao caráter hidrofóbico do filme.

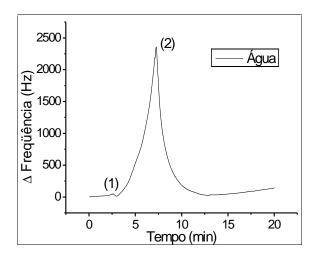


Figura 7 – Variação da freqüência para vapor d'água em função do tempo de um PQC com celulose aderida e posterior deposição por plasma de filme a base de HMDS: (1) adição; (2) remoção da água.

A Figura 8 mostra um uma imagem lateral da interface celulose/PQC onde é possível notar um levantamento do substrato. Portanto, ocorre a difusão da água e permeação na celulose, o que provoca o descolamento, que pôde ser observado por Microscopia Eletrônica de Varredura (MEV).

Figura 8 – Imagem obtida por microscopia eletrônica de varredura da interface celulose/POC.

A caracterização da adsorção de vapores de água, 2-propanol, acetona, n-hexano e clorofórmio em celulose mostrou que ocorre uma variação da elasticidade do filme de celulose provocando o descolamento e conseqüente variação positiva na freqüência de ressonância do cristal. Portanto, os filmes utilizados ainda permitem a difusão dos reagentes para o substrato, onde a difusão é facilitada para compostos menores e/ou apolares, quando filme é a base de HMDS. Assim, a celulose é um substrato promissor e atende aos requisitos da tecnologia *Roll-to-Roll* para adsorção de poluentes mesmo na fase gasosa.

3.2.2. Adsorção em PVC

O substrato de PVC foi exposto apenas aos vapores de H_2O , 2-propanol e n-hexano porque acetona ou clorofórmio causariam sua rápida dissolução. Os resultados obtidos são mostrados na Figura 9. Pode-se notar através das curvas obtidas que ocorre uma rápida difusão dos reagentes pelo corpo do filme. A Tabela 1 mostra a variação da freqüência por unidade de fluxo para o tempo de 3,28 min, onde ocorre a máxima variação de freqüência pela admissão de n-hexano. Assim, obtém-se maiores valores para moléculas menores, como a água.

Tabela I – Variação da freqüência por unidade de fluxo para o tempo de 3,28 min, onde ocorre a máxima variação de freqüência pela admissão de nhexano

Reagente	Variação da freqüência por
	unidade de fluxo (Hz/g/min)
Água	-20. 10 ⁵
2-propanol	-3,2. 10 ⁵
n-hexano	-3,2. 10 ⁵

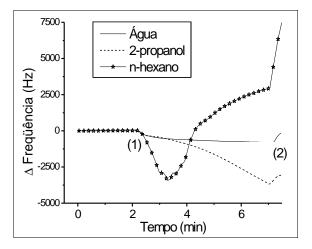


Figura 9 – Variação da frequência em função do tempo para filme fino de PVC sem modificação superficial para tempos curtos; a região (1) mostra a adição e a (2) representa a remoção do reagente.

A Figura 10 mostra os resultados da exposição de PVC por longo tempo aos reagentes. Apenas para comparação, usou-se acetona e pode-se observar que, devido à rápida dissolução, a variação de freqüência atinge o máximo valor de escala em 45 s. Pode ser observado que o n-hexano, devido à sua baixa polaridade, não se mantém no corpo do filme após 3 min, ocorrendo a dessorção. Após 5 min, provavelmente devido à retirada de solvente ou outros compostos aderidos ao filme, as propriedades viscoelásticas do filme de PVC mudam o que leva a uma grande variação de freqüência e ao não retorno a sua freqüência original. Para 2-propanol nota-se que há uma lenta mudança na freqüência, provavelmente devido à dissolução do filme.

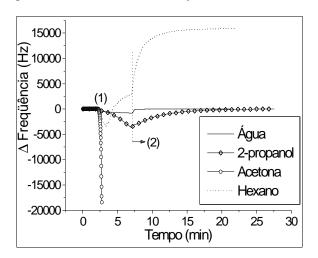


Figura 10 – Variação da freqüência em função do tempo para filme fino de PVC sem modificação superficial para tempos, com valor para acetona. A região (1) mostra a adição e a (2) representa a remoção do reagente.

PVC modificado por um filme a base de HMDS (700 Å) foi analisado e a Figura 11 mostra resultados típicos. Para acetona e clorofórmio novamente o máximo da escala do equipamento foi

atingido cerca de 40s após o início da admissão dos reagentes. Para 2-propanol e n-hexano houve alta variação de freqüência, portanto a difusão para dentro do corpo do substrato não foi impedida pelo filme a base de HMDS. Essa difusão muito provavelmente é facilitada pela porosidade do substrato. É importante observar que o filme a base de HMDS dificulta a perda de n-hexano para o fluxo de N_2 , e a medida apresenta diminuição de freqüência durante todo o tempo de admissão.

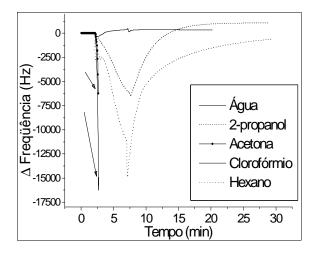


Figura 11 – Variação da freqüência em função do tempo para filme fino de PVC modificado pela deposição de filme a base de HMDS: As flechas indicam o aborto da medida pelo equipamento.

4. Conclusões

A caracterização qualitativa da capacidade de adsorção e dessorção através da técnica de microbalança de quartzo mostrou-se complexa devido às espessuras e quantidade de camadas (filmes) utilizados sobre o cristal. O conjunto formado leva a fenômenos não-gravimétricos que impossibilitam análises mais precisas quando utilizada esta técnica. Contudo, esse processo, de baixo custo e grande facilidade de implementação, compreender os fenômenos importantes ocorrendo em substratos muito finos e deve ser explorado para aqueles substratos que apresentem pouca espessura, ou seja, apresentem pequena massa aderida sobre o cristal.

5. Referências

- [1] Ayres, R.U., Ayres, L.W. Industrial ecology: towards closing the materials cycle, Industrial metabolism: restructuring for sustainable development, United Nations University Press, 1996.
- [2] Nascimento Filho, A.P., Produção de novos filmes para detecção de poluentes, Dissertação de Mestrado, EPUSP, 2002.
- [3] Tan, I. H., da Silva, M. L. P., Demarquette, N. R., Paper surface modification by plasma deposition of double layers of organic silicon

- compounds, J. Mater. Chem., n°. 11, 1019-1025, 2001.
- [4] da Silva, M.L.P., Demarquette, N.R., Tan, I.H., Use of HMDS/Hexane double layers for obtaining low cost selective membrane, Cellulose, n°. 10, 171-178, 2003.
- [5] Hoffman, K.N., et. al., Yield and performance of amorphous silicon based solar cells using roll-to-roll deposition, Photovoltaic Specialists Conference, Conference Record of the Twentieth IEEE, Vol. 1, 293-295, 1988.
- [6] Wang, J., Clouser, S., Thin Film Embedded Resistors, IPC Review, 7-10, 2001.
- [7] Izu, M., Ovshinsky, S.R., Deng, X., Ovshinsky, H.C., Jones, S.J., Doehler, J., Continuous roll-to-roll a-Si PV module manufacturing, AIP Conference Proceedings, n°. 353, 290, 1996.
- [8] Izu, M., Ellison, T., Roll-to-roll manufacturing of amorphous silicon alloy solar cells with in situ cell performance diagnostics, Solar Energy Materials and Solar Cells., Vol. 78, no. 1-4, 613-626, 2003.
- [9] Terrazzoni-Daudrix1, V., Guillet, J., Niquille, X., Feitknecht, L., Freitas, F., Winkler P., Shah, A., Morf, R., Parriaux O., Fischer D., Enhanced light trapping in thin film silicon solar cells deposited on PET and glass, 3rd World PVSC, Osaka, Japan, 2003.
- [10] Hou, J., Chen, Y., Li, Y.S., Weng, X., Li, H., Pereira, C., Reliability and performance of flexible electrophoretic displays by roll-to-roll manufacturing processes, SID Symposium Digest of Technical Papers, Vol. 35, Issue 1, 1066-1069, 2004.
- [11] Liang, R.C., Hou, J., Zang, H.M., Chung, J., Tseng, S., Microcup® displays: Electronic paper by roll-to-roll manufacturing processes, Journal of the Society for Information Display, Vol. 11, Issue 4, 621-628, 2003.
- [12] Whitely, J., Flexible printed circuits, Electronics Manufacturer, Vol. 16, no. 7, 12-13, 1971.
- [13] Lung, E., Assinann, R., Aschenbrenner, R., Hehelt, R., Packaging of an eletronicmicrofluidic hibrid sensor, Electronic Components and Technology Conference, IEE, 373-376, 2003.
- [14] Jesus, D.P., "Cristais piezelétricos de quartzo com eletrodos separados e superfície modificada como sensores em fase líquida", Dissertação de Mestrado, IQUSP, 1999.
- [15] Nascimento Filho, A.P., Produção de préconcentradores para poluentes em fase líquida, Qualificação de Doutorado, EPUSP, 2004.

Agradecimentos

Ao Laboratório de Química Analítica do IQUSP pela utilização dos equipamentos.

Ao CNPq e à FAPESP pelo apoio financeiro.