PRODUÇÃO DE ÍMÃS PERMANENTES DE Pr-Fe-B VIA HDDR

Suelanny Carvalho da Silva¹, Hidetoshi Takiishi²

Instituto de Pesquisas Energéticas e Nucleares - IPEN suelanny@yahoo.com.br; takiishi@ipen.br

1. Introdução

O processo de hidrogenação, desproporção, dessorção e recombinação (HDDR) desenvolvido em 1989 por Takeshita e Nakayama, é um novo método e está sendo, atualmente, muito atrativo na produção de pós magneticamente coercivos [1-2].

Neste trabalho foram produzidos e estudados os imás permanentes de Pr-Fe-B moldados com parafina. Estes imás sofreram pequenas adições de: Cobalto, Nióbio, Alumínio, Gálio, Gadolínio, Térbio e Disprósio com a finalidade de verificar a influência destes elementos nas propriedades magnéticas dos ímás HDDR. As ligas magnéticas utilizadas foram caracterizadas microestruturalmente e os imás foram caracterizados magneticamente após as ligas terem sido submetidos a um tratamento térmico anterior ao processo HDDR.

2. Metodologia

As ligas estudadas neste trabalho foram: Liga Padrão - $Pr_{14}Fe_{bal}Co_{16}B_6Nb_{0,1}$ e $Pr_{14}-Fe_{bal}-Co_{16}-B_6-Nb_{0,1}-X_{0,3}$ (onde X =Al, Ga, Gd, Tb e Dy) preparados via HDDR.

O processo de hidrogenação, desproporção, dessorção e recombinação (HDDR) consiste em aquecer, sob determinadas condições, a liga de Pr-Fe-B na presença de gás hidrogênio. Na primeira etapa conhecida como hidrogenação, a liga absorve hidrogênio (temperatura ambiente até 100°C). Ao aquecer a liga até a temperatura desejada (700-860°C), sob atmosfera de H₂, ocorre a reação de desproporção da liga. Finalmente, ao submeter o sistema a vácuo há a dessorção do hidrogênio e recombinação da liga em grãos finos da fase matriz.

3. Resultados

As ligas que foram utilizadas para obtenção dos pós e imãs HDDR foram caracterizadas por espectroscopia de energia dispersiva (EDS) após terem sido submetidas à metalografia. Na Tabela I, podem ser verificadas as composições químicas das fases determinadas por EDS, sem e após tratamento térmico.

Tabela I- Composição química das fases determinadas por EDS, sem considerar o teor de Boro, da liga de Pr-Fe-Co-B; sem e após o tratamento térmico.

	Fases	Pr	Fe	Co
		(% at.)	(% at.)	(% at.)
sem	Pr ₂ (Fe Co) ₁₄ B	13,34	69,81	16,85
trat.	$Pr(FeCo)_2$	34,25	23,64	42,11
térmico	Pr ₃ (FeCo)	70,34	3,16	26,51
	FeCo	1,01	87,23	11,76
após	Pr ₂ (Fe Co) ₁₄ B	13,37	70,39	16,24
trat.	$Pr(FeCo)_2$	34,27	27,03	38,70
térmico	Pr ₃ (FeCo)	68,09	6,47	25,44

De acordo com as curvas de desmagnetização (Figura 1) dos ímãs podem ser observados os resultados obtidos, como pode ser visto na Tabela-II:

Tabela II - Propriedades magnéticas dos ímas HDDR.

Liga	Br	iHc	bHc	(BH) máx	FQ
	[kG]	[kOe]	[kOe]	MGOe	razão
Al	8,50	10,60	6,90	16,34	0,43
Ga	8,80	9,80	6,00	15,81	0,35
Gd	8,20	10,90	6,50	14,96	0,46
Tb	8,90	8,50	5,10	13,34	0,27
Dy	6,90	5,40	3,30	7,20	0,26
Pad.	8,20	10,20	6,10	14,40	0,40

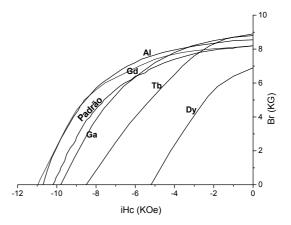


Figura 1 - Valores de remanência (Br) em função da coercividade (iHc) obtidos através da desmagnetização dos imãs HDDR (curvas de desmagnetização).

4. Conclusões

Através do trabalho realizado e descrito anteriormente, pode-se concluir que:

O sistema de processamento desenvolvido para preparação de pós HDDR: retorta para hidrogenação, sistema de vácuo e forno, mostrou ser eficiente para obtenção dos imãs preparados via HDDR.

O tratamento térmico realizado, de 20 horas numa temperatura de 1100°C, eliminou, de forma esperada, o ferro livre nas ligas Pr-Fe-Co-B.

Foram obtidas boas propriedades magnéticas para o imã preparado com a liga $Pr_{14}Fe_{bal}Co_{16}B_6Nb_{0,1}Al_{0,3}$, com pressão inicial de H_2 de 0,093 MPa, sendo: Br = 8,5 kG (remanência); iHc = 10,6 kOe (coercividade intrínseca); BH máx = 16,34 MGOe (Produto de energia máximo) e FQ = 0,43 (Fator de quadratura).

Observa-se que as ligas que tiveram o acréscimo de $Al_{0,3}$ e $Gd_{0,3}$, respectivamente, apresentaram melhores propriedades magnéticas em relação à liga Padrão; conseqüentemente, as ligas que tiveram acréscimo de $Ga_{0,3}$; $Tb_{0,3}$ e $Dy_{0,3}$ apresentaram piores propriedades magnéticas em relação à liga Padrão.

5. Referências

[1] TAKIISHI,H.; Tese de Doutorado, IPEN, 2001.

[2] BARBOSA, L. P.; TAKIISHI, H.; FARIA, R. N., *J. Magn. Magn. Mater.*, v. 270, p. 291-297, 2003.

Agradecimentos

IPEN/ CNPq/ FAPESP

¹ Aluno de IC da CNPq.